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A self-similar dynamic problem of the nonlinear theory of elasticity concerned 
with an oblique impact on a half-space, is considered, Thermodynamic 
restrictions affecting the existence of shock waves in an elastic medium are 
used as the basis for constructing uniquely possible combinations of wave fronts, 
depending on the boundary conditions, by means of which the perturbationsare 
propagated through the medium. Particular features of the numerical solution 
of the problem are discussed and its results given. Plane self-similar problems 
of the nonlinear dynamic theory of elasticity have been studied before [l-33. 

Qualitative features of problems belonging to the class in question were discuss- 
ed in [1] and the laws of thermodynamics were suggested as the basis for obtain- 
ing a uniquely possible’wave pattern. Problems of reflection of plane shock 
waves from the plane barriers were considered in [Z], while an analytic solu- 
tion of the problem in question was constructed in [3] for the case of small 
boundary perturbations, for a neo-Hookean model of elastic medium. Below 
the problem of impact loading of a half-space with the boundary conditions 

given in terms of velocities is solved within the framework of the quadratic 

theory of elasticity. 

1. A system of equations of dynamic deformation of elastic medium written in 

the Cartesian rectangular coordinate system has the form [4] 

Here CFj jr t?ij, Vi, Uj denote the components of the stress tensors, finite Almansi 
deformations, the velocity and displacement vectors respectively, while p and PO 
denote the density in the stressed and unstressed state. We close the system of equa- 
tions (l..l) by employing, in what follows, the relations connecting the elastic poten- 
tial @’ with the invariants of the Alma& deformation tensor 

w = v&r,2 + PI, + EIJ, i- mI,3 + nf, Cl.21 

Let, beginning from the instant t = 0, load the boundary tr > 0 of the half- 
space the elastic properties of which are described by (1. Z), in such a manner that 

every material point of the boundary begins to move with constant velocity the 

components of which are ulO, vzo and vsO = 0. Restricting ourselves to the second 
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order terms in the cornp~~~~ of the tensor Uiqjr we can reduce the system (J,, I), 

(1.2) in the present case to the form 

@ + 2E\) %r11 + 2au1a %,I1 -i- %%db11 = PO ff - %,&h I df (1.3) 

Puz7Xl + PY - PN”27rn,,,, -+ ~I,&2111) = po (1 - LLr,JdUs / dt 

a I= 3 (t i- m -i_- n) - ‘/z (31. i- 21.4, y -= ‘i,l -I- Y*n - ‘/,A - !,a 

Let us introduce the self-similar variable and rewrite (1.3) in the following dimension- 
less form: 

AT” + a,@‘@” 

5 = ~1,’ (GA 
2p) / p()w 

a, = 2a I (a + 

d==l - It2 + 

B=x--p+ 

The relations (1.4) in which a prime denotes differentiation with respect to E, repre- 

sent a homogeneous system of two, second order ordinary differential equations. 

Let us consider the one-dimensional problem by putting vao = 0. Then (1.4) 

shows that a non~ivia~ solution is possible only when A = 0. The last equation is 

linear, and its solution has the form L 

We assume in (I. 5) that the leading front of the perturbation occupies the position 

ri, = 1 (this follows directly from the equation A = 0). The non~~vial solution 

should hold on the interval so < E < 1 where EO < %O / GO and u1 (E,) -1 
ulo. Substituting the latter relations into (1.5) we find, that if a, < 2, then the 

nontrivial solution will be possible only when urO ( 0. For real materials [S] a, < 

-3.5, i.e. we arrive at the same results as in the case of a real gas. A centralized 
Riemann wave appears only when the action exerted upon the medium causes its ex- 

pansion (vlo < 0). A perturbation leading to compression (uro > 0) propagates 
through the medium in the form of a shock wave. In this case we have T” =0 every- 
where except in the case E = g * = G / G, where G is the velocity of the shock 

wave obtained from the equation _.j = 0 i when T = 0. We note that g* var- 
ies with the intensity of the shock wave but g* > 1 everywhere, i. e. G > Go. 

If us0 f 0, then nontrivial solutions are possible when the deter~nan~ of the 

system (1.4) is zero AR. _ a2 (+ _ yyp = fj (1.6) 

In the regions in which (1.6) does not hold, (1.4) has a triviai solution 

T' = co&i, 0' = const. 

In the regious where (1.6) holds, the solution is obtained from the centralized tiemann 
wave the leading and trailing fronts of which are themselves weak waves. Apart from 
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the centralized waves, a perturbation may propagate through the medium in the form 
of shock waves. We obtain the actual wave pattern using the fact that the number of 
boundary conditions is equal to the number of the const~~ of integration of the system 
( 1.4). 

Let T& shock waves and k centralized waves (Z/C weak waves) propagate ~r~gh 
the medium as a result of a dynamic action. Four integration constants must be de- 
termined in the zone of the trivial solution of (1.4) and three constants in the zone of 
the nontrivial solution, while the velocities (position) of the shock waves and weak 
waves remain unknown. In the present case we have n + k zones in which the 
solution of (1.4) is trivial, and k zones in which it is nontrivial, therefore the total 
number of integration constants is equal to 4 (n f k) + 3k -j- 2k + n. Four 
boundary conditions can be specified at each surface of discontinuity. In the case of 
a shock wave these conditions will be bil = 0 (continuity of the ~splacemen~) 
and [oij]vj = p+ (v$ - G)[v,l (conservation of momentum) and for a weak 
wave we have [vi] = 0 and the corresponding dynamic condition of compatibility 
of the first order discontinuities [6]. Thus we can equate the number of the boundary 
conditions with that of the integration constants and write 5n + 9k 
2k) i- 2 from which follows n + k = 2. 

= 4 (n -f-. 

An oblique impact acting on an elastic half-space generates in it either two shock 
wave&, or two centralized tiemann waves, or one shock wave and one centralized 
wave (four cases). The choice of one of the four possible wave patterns for each part- 
icular case, the choice depending on the type of the boundary conditions and of the 
system (1.4), is not possible as it was in the case of the one-dimensional problem, 
because of the complexity of the patterns. A different approach is based on the study 
of the properties of the shock waves in an elastic medium subjected to a finite, plane 
deformation. 

2. We shall represent a shock wave pmpaga~ng through an elastic medium the 
motion of which is described by (1. l), (1.2), by a surface on which the displacemeu~ 
are continuous, while the components of the displacement gradient, deformation and 
stress tensors and of the velocity vector, and the density, all exhibit a first order dis- 
continuity. If the 51 -axis of the moving x1, x2 -coordinate system attached to 
the surface of discontinuity is normal to this surface, then the components of the vel- 
ocity vector are given by formulas 

Vi = aui / 6t 4 (~1 - G)Ui,l + UzUi,z, i = 1, 2 (2.3) 

Applying to (2.1) the discretizing operation and solving the resulting relations for 
[vi] and [r$, we obtain 

The plus and minus superscripts in (2.2) denote the quantities computed in front and 
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directly behind the shock wave, respectively. The plus sign is omitted from the com- 
ponents of the tensor @i,j since in what follows they will always be computed iu 
front of the surface of discontinuity. Substituting (2. Z), (1, I) and (1. 2) written in 
terms of the discontinuities into the dynamic conditions of compatibility of the discon- 

tinuities, leads to a system of two equations from three unknowns or, z2 and V 

(V - %IQ + %, + (y - PI@ = 0 (2.3) 
(V - s&z + IQ, = 0 

v = p- @I-- - GE $1 = Pl@ -i- 3.9 + 2mJl,~ + pi,,, - cm, 

% = p2p 4- 3 (UI,I + %2) - 2yz1, B = 6m + 21- 4h - 2~ 

R, = b,V - h, & = w - &, k, = (By + h)u,,, -I- 2 (y-p)u2,1 

kz = (2Y - ph,2 + 2Y&,,7 h = %,27 b2 = u2,1 

In (2,3) the deformed state in front of the surface of discontinuity is assumed given, 

and the parameter V characterizes the rate of ~ropaga~on of the shock wave. Assum- 
ing that ~1 is known, we arrive in accordance with (2.3) to the following cubic equa- 
tion in v : 

Y - s&V - s# + R,& (V - sz> + (y - pm?~1 = 0 (2.4) 

When %r2 = U2,r = 0, VI = sr, v, = vc7, = ss , the solution of (2.4) is the 
simplest. substitution of the first root into (2.3) yields zs = 0, i. e. the shock wave 

is longitudinal, Since sr > s,, it follows that in the case when the medium is unde- 

formed or subjected to hydrostatic compression, the leading front of the perturbation 
propagating through the medium will, as long as it is a shock wave, only be a long- 
itudinal shock wave. When the influence of the nonlinearities diminishes, the veloc- 

ity of the longitudinal shock wave will tend to the value Go , the latter denoting the 

velocity of the irrotational shock wave in the linear theory of elasticity. The value 

of the coincident roots corresponds to a shock wave on which 9 += 0 and 71 # 0, 
When the influence af the nonlinearities diminishes&he velocity of this wave terids to 

the value {pa/ pa.) ‘h of the velocity of the equivolu~nal shock wave in the linear 

theory of elasticity. From now on, we shall call this shock wave quasi-transverse. 

If %r2 or, u2,r is not zero, then the first shock wave willnot bestrictly longitudinal, 

i.e. ‘ta # 0 on this wave, and we shall call this wave quasi-longitudinal. 

When shear deformations are present in front of the surface of discontinuity, then 

the velocities of the quasi-longitudinal and quasi-transverse waves are given by the 

following corresponding expressions: 

Vl = $1 -I" && ,f bI - 4 -I- RY - pt)-R,, I ($1 - s2>]" (2.5) 

= sz * uL2R272 - ty - p)R22?/ (s1 - &‘))'~* 

GiI 2 &iSj - kj, i, i = 1, 2) 

On substituting the second relation of (2.5) into (2.3) we find that the quasi-transverse 
shock waves are possible only when the following condition holds: 

For real materials we have p < 0, consequently ~~ \i 0, i. e. the quasi- transverse 
shock wave is at the same time a rarefaction wave. The components of the 
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displacement gradient tensor ui,j are assumed small (quadratic theory of elasticity), 
therefore we must assume that on the quasi-transverse shock wave ‘El is of the second 
order of smallness compared with te. 

Omitting cumbersome transformations connected with determining the discontinui- 

ties according to (1. l), (1.2) and (2.2) we can write, for the thermodynamic condi- 
tions of compatibi~~ of the discontinuiti~ f7 ‘j 

-‘/$ [Vj]IVj] + Ujl I [v’l - [t'f% / PO > 0, c = v / (q- - G) (2.7) 

the following final result for the case of a quasi-longitudinal wave when the parameter 
V is given by the first equation of (2.5): 

(I + m + n - 31,x - 3p)2,3 < 0 (2.8) 

We note that the deformed state in front of the surface of discontinuity does not affect 
the magnitude of the entropy jump at the quasi-longitudinal shock wave. If I, m 
and n negative [S] or if their order is lower than that of h and p, then (2.8) yields 

the analog of the Cemplen theorem for the perfect gas, i. e. the only quasi-longitud- 
inal low intensity shock waves possible in an elastic medium are those, which lead to 

compression of the medium. If the boundary conditions are such that a rarefaction 
occurs, then the shock wave representing the solution of the corresponding linear prob- 

lem must be replaced, in the non&mar case, by the centralized kiemann rarefaction 

wave. We arrive at the same result by basing our arguments on the one-dimensional 
case discussed earlier where the solution obtained without using any thermodynamic 
constraints was nevertheless in complete agreement with them. 

In the case of a quasi-transverse shock wave when V is determined from the 

second equation of (2.5), the inequality (2.7) becomes an identity to within the third 
order terms in ui,j. It follows that in (1.2) the fourth order terms in ui, j must be 
taken into account. If we restrict ourselves in (1.2) to terms which have been written 

out, then from (2.7) it follows that quasi-transverse, low intensity shock waves are 
impossible in the elastic medium. Numerical computations show that the centalized 

shear wave which represents a nontrivial solution of the system (1.4) leads, just as the 
quasi-transverse shock wave (2.6), to a dilation of the medium. Using the principle 

of least work done by the entropy, we conclude that the quasi- transverse shock waves 
are not ~ermodyna~ca~y feasible. It is this particular fact which explains the ex- 

perimental data which indicate the impossibility of registering transverse shock waves 

at considerable distances from their sources. 

3. Let ur,, > 0, i.e. assume that the boundary conditions of the problem lead 

to compression of the medium, Itilizing the previous arguments we conclude, that a 

perturbation propagates through the medium in the form of a longitudinal (z = 0 

since u~,~ = z&Z,1 = 0 in front of the surface of discontinuity), shock and centraliz- 

ed shear waves. Let us denote by g* = G / Go = 1 + 6 the position (Fig. 1) of 
the shock wave and by I&, and Z& the leading and trailing front of the centralized 

wave. Then we have in the zone between E* and I& 0 = 0, T’ = const, con- 
sequently the only values constant and different from zero will be urr, ear and vr, 
Using the dynamic and kinematic conditions of compatibility of the discontinuties at 
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Fig. 1 

the longitudinal shock wave 

]oJ = -poG Iv,], Mu, / at] = -Gz, 

and the relations (1. l), (1.2) and (2.2), we obtain 

~1 = --GT,’ 1 (1 - To’), urr = (h + 2p + aTo')To' (3.1) 

(1 + a,T,‘)(l - T,‘) =.(I $- S)z 

According to (3. l), all parameters defining the deformed state and stress state can be 
expressed, in the zone contained between E* and E,-, , by a single parameter such 

as e.g. 8. Within the zone contained between E. and EI , the solution of the 
problem can be obtained from the following system of ordinary differential equations 
derived from (1.4) and ( 1.6): 

(3.2) 

77” = 2 AB~--Bf(F+T--ST’)--Af(F,--T) 
2.4fZ - Bf (a1 - 2) - Af (f - 2X) 

, f =- a3 - y 

When solving the problem by numerical methods, we must remember that 8” (Es) = 
00 and that at the leading front of the centralized rarefaction wave T” = 00. 

The boundary conditions for (3.2) are given by 

Q (Eo) = 0, T’ (Eo) = To’, T (50) = To’ (Eo - E*) + (3.3) 

T (E*)> T (g*) = 0 

R = ulop, P = 1 - T' (Ed, R = T (Ed - E,T'(h), 
@ (Ed - ElQ' (Ed + RF@' (L) = ~20 

The quantity E. is given in terms of 6 by the equation B (go) = 0. It follows 
that we must solve the boundary value problem for (3.2) with boundary conditions 
(3.3), in the zone contained between ,$, and E1 . The fact that there are five 
boundary conditions in (3.3) and not three. which would agree with the order of the 
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system of equations (3.2), is explained by the fact that El and 6 in (3.3) remain 
unknown and have to be determined in the course of solving the problem. 

The problem was solved numerically, and the results obtained confirmed the cor- 
rectness of the choice of the wave front configuarations. 

Certain of the results obtained in the course of solving the problem of pure shear 
when uaO # 0 and ull = 0 at the boundary of the half-space, are given below 

3.105 152 401 569 681 1190 1631 2249 

(qO - 1). 10s i 7 14 21 63 115 662 
(i - %)*I@ i 7 15 21 68 134 289 

(+).,, 1 7 14 20 60 ii0 200 

h.105 50 357 703 1013 3243 6533 9647 

G - h.105 i 7 15 21 63 ii7 684 

- 4 
h + 211 

.I@ 82 218 308 369 639 864 3247 

where the subscript 0 refers to the zone between t* and E,,, and the subscript 
1 to the zone between & and the boundary of the half-space 11 = p / p,,, h = to - 

El. It can be seen that the process of deformation takes place as follows: the leading 
front of the perturbation is a compression shock wave (Poynting effect which states that 
pure shear causes a compression of the medium) so that in the zone 0 the medium 
is compressed, while the centralized shear wave leads, at the same time, to a dilata- 
tion of the medium. Finally.the Weissenberg effect is observed in zone 1 (pure shear 

leads to the dilatation of the material). The width h of the centalized wave, the 
absolute values of the Poynting and Weissenberg effects and the intensity of the shock 
wave all increase with the increasing action (us0 / Go) on the medium. The stress 

aal decreases in the zone of nontrivial solution (between E,, and &) with de- 

creasing E, and this is also true when vlo> 0 and the quantity 612 increases. 

All functions are monotonous in the zone of nontrivial solution. The position of 
the leading front of the centalized wave for al = -36.42, a2 =--5.39, a, = -5.69, 

x = 0.29 (which corresponds [5] to steel and was used to obtain the data tabulated) 
varies‘within the limits 0.5439 f to 5 0.5566 when vzo /G varies within the limits 
shown in the table. At the same time go increases with increasing action, In the 
case of an oblique impact (vi0 > O)r to and the width of the centalized wave both 

vary within approximately the same range. 

If vi0 < 0, then the compressive shock wave must be replaced by the centaliz- 
ed rarefaction wave (the zone between E1 = 1 and E, shown in Fig. 2). Equation 

& = 1 follows directly from (1.6) if we put T’ = 0 and 8’ = 0. In the region of 

the centralized rarefaction wave 8 G 0 and this follows directly from (I. 4) and 
(1.6), i. e. the centralized rarefaction wave is strictly longitudinal (‘he shear deforma- 
tions propagate more slowly than the volume deformations). The functicn T can be 
found from the first order differential equations A = 0 with the boundary condition 
T (1) = 0. In the zone contained between Es and Ea (centralized shear wave)the 

solution is obtained from the system (3.2) with the boundary conditions of the form 
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Fig. 2 

(3.3) where E* must be replaced by Es, & by Es and & by &. The five boundary 
conditions (3.3) are used to determine three constants of integration of the system 
(3.2), and the values of Es and &. The quantity Es is found from the con- 
dition B (fs) = 6. In solving the problem numerically it was found that T” be- 

comes infinite when 5 = 1. The behavior of all functions in the zone of the central- 
ized waves in monotonous, and the properties of the equations are such that 51 
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